资源类型

期刊论文 43

年份

2023 1

2022 6

2021 5

2020 3

2019 9

2018 1

2017 1

2015 1

2014 5

2013 1

2009 4

2007 2

2006 1

展开 ︾

关键词

FRP筋 1

体液免疫应答 1

即时医疗 1

圈梁 1

坚固性 1

复合梁 1

外泌体 1

大开间少墙单面走廊砌体结构 1

延性 1

抗弯性能 1

构造柱 1

柱移除 1

楼板试验 1

欧洲规范4 1

生物传感器 1

窗间墙 1

结直肠癌 1

肿瘤微环境 1

自身抗体 1

展开 ︾

检索范围:

排序: 展示方式:

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 888-906 doi: 10.1007/s11709-020-0637-0

摘要: In this study, a total of 177 flexural experimental tests of corroded reinforced concrete (CRC) beams were collected from the published literature. The database of flexural capacity of CRC beam was established by using unified and standardized experimental data. Through this database, the effects of various parameters on the flexural capacity of CRC beams were discussed, including beam width, the effective height of beam section, ratio of strength between longitudinal reinforcement and concrete, concrete compressive strength, and longitudinal reinforcement corrosion ratio. The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams, while other parameters have much less effect. In addition, six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database. It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams, there is one model overestimating the flexural capacity. Finally, a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.

关键词: CRC beams     flexural capacity     steel corrosion     database     empirical models    

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 131-143 doi: 10.1007/s11709-021-0787-8

摘要: This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

关键词: RC beams     flexural     strengthening     CFRP     CNTs     finite element    

Predicting the response of continuous RC deep beams under varying levels of differential settlement

M. Z. NASER, R. A. HAWILEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 686-700 doi: 10.1007/s11709-018-0506-2

摘要: This paper investigates the effect of differential support settlement on shear strength and behavior of continuous reinforced concrete (RC) deep beams. A total of twenty three-dimensional nonlinear finite element models were developed taking into account various constitutive laws for concrete material in compression (crushing) and tension (cracking), steel plasticity (i.e., yielding and strain hardening), bond-slip at the concrete and steel reinforcement interface as well as unique behavior of spring-like support elements. These models are first validated by comparing numerical predictions in terms of load-deflection response, crack propagation, reaction distribution, and failure mode against that of measured experimental data reported in literature. Once the developed models were successfully validated, a parametric study was designed and performed. This parametric study examined number of critical parameters such as ratio and spacing of the longitudinal and vertical reinforcement, compressive and tensile strength of concrete, as well as degree (stiffness) and location of support stiffness to induce varying levels of differential settlement. This study also aims at presenting a numerical approach using finite element simulation, supplemented with coherent assumptions, such that engineers, practitioners, and researchers can carry out simple, but yet effective and realistic analysis of RC structural members undergoing differential settlements due to variety of load actions.

关键词: concrete     continuous beams     deep beams     finite element modeling     support settlement    

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1520-1530 doi: 10.1007/s11709-019-0580-0

摘要: Fiber-reinforced polymer (FRP) bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion. Among the different types of FRP bars, basalt FRP (BFRP) bars have been used in different structural applications and, herein, three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional (3-D) finite element analysis (FEA). The beams were tested in four-point bending. In the FEA the behavior of concrete is simulated using the “Concrete-Damaged Plasticity” model offered in ABAQUS software. The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency. The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results. FEA results were compared to the test results with regard to failure load and crack patterns. Both test the results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12, where CSA S806-12 seems to overestimate the shear strength for two beams.

关键词: basalt Fiber-reinforced polymer bars     reinforced concrete beams     finite element analysis     damaged plasticity model     design codes    

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

《结构与土木工程前沿(英文)》   页码 981-993 doi: 10.1007/s11709-023-0979-5

摘要: This study modeled the moving-vehicle-induced forcing excitation on a single-span prismatic bridge as a multiple frequency-multiplication harmonic load on the modal coordinates of a linear elastic simple Euler–Bernoulli beam, and investigated the forced modal oscillation and resonance behavior of this type of dynamic system. The forced modal responses consist of multiple frequency-multiplication steady-state harmonics and one damped mono-frequency complementary harmonic. The analysis revealed that a moving load induces high-harmonic forced resonance amplification when the moving speed is low. To verify the occurrence of high-harmonic forced resonance, numerical tests were conducted on single-span simple beams based on structural modeling using the finite element method (FEM) and a moving sprung-mass oscillator vehicle model. The forced resonance amplification characteristics of the fundamental mode for beam response estimation are presented with consideration to different end restraint conditions. The results reveal that the high-harmonic forced resonance may be significant for the investigated beams subjected to vehicle loads moving at specific low speeds. For the investigated single-span simple beams, the moving vehicle carriage heaving oscillation modulates the beam modal frequency, but does not induce notable variation of the modal oscillation harmonic structure for the cases that vehicle of small mass moves in low speed.

关键词: forced vibration     linear Euler beam     moving load     harmonic structure     frequency modulation     end restraints    

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 729-743 doi: 10.1007/s11709-022-0854-9

摘要: Three-point bending tests were carried out on nineteen Reinforced Concrete (RC) beams strengthened with FRP in the form of completely wrapping. The strip width to spacing ratios, FRP type, shear span to effective depth ratios, the number of FRP layers in shear, and the effect of stirrups spacing were the parameters investigated in the experimental study. The FRP contribution to strength on beams having the same strip width to spacing ratios could be affected by the shear span to effective depth ratios and stirrups spacing. The FRP contributions to strength were less on beams with stirrups in comparison to the tested beams without stirrups. Strengthening RC beams using FRP could change the failure modes of the beams compared to the reference beam. In addition to the experimental study, a number of equations used to predict the FRP contribution to the shear strength of the strengthened RC beams were assessed by using a limited number of beams available in the literature. The effective FRP strain is predicted by using test results, and this prediction is used to calculate the FRP contribution to shear strength in ACI 440.2R (2017) equation. Based on the statistical values of the data, the proposed equation has the lowest coefficient of variation (COV) value than the other equations.

关键词: carbon     glass     strengthening     shear strength     reinforced concrete beam     fiber reinforced polymer    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 306-325 doi: 10.1007/s11709-022-0890-5

摘要: This paper numerically studied the effect of uncertainty and random distribution of concrete strength in beams failing in shear and flexure using lattice modeling, which is suitable for statistical analysis. The independent variables of this study included the level of strength reduction and the number of members with reduced strength. Three levels of material deficiency (i.e., 10%, 20%, 30%) were randomly introduced to 5%, 10%, 15%, and 20% of members. To provide a database and reliable results, 1000 analyses were carried out (a total of 24000 analyses) using the MATLAB software for each combination. Comparative studies were conducted for both shear- and flexure-deficit beams under four-point loading and results were compared using finite element software where relevant. Capability of lattice modeling was highlighted as an efficient tool to account for uncertainty in statistical studies. Results showed that the number of deficient members had a more significant effect on beam capacity compared to the level of strength deficiency. The scatter of random load-capacities was higher in flexure (range: 0.680–0.990) than that of shear (range: 0.795–0.996). Finally, nonlinear regression relationships were established with coefficient of correlation values (R2) above 0.90, which captured the overall load–deflection response and level of load reduction.

关键词: lattice modeling     shear failure     flexural failure     uncertainty     deficiency     numerical simulation    

Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

BU Liangtao, SHI Chuxian, SONG Li

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 393-398 doi: 10.1007/s11709-007-0053-8

摘要: Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs). The experimental results showed that the consumption of CFP

关键词: flexural     full-size     Four-point     consumption     experimental    

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0968-8

摘要: Fiber-reinforced polymers (FRPs) have received considerable research attention because of their high strength, corrosion resistance, and low weight. However, owing to the lack of ductility in this material and the quasi-brittle behavior of concrete, FRP-reinforced concrete (FRP-RC) beams, even with flexural failure, do not fail in a ductile manner. Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones, the present study proposes using a precast confined concrete block (PCCB) in the compression zone to improve the ductility of the beams. A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions. The control beam failed due to shear, and the PCCBs exhibited different confinements and perforations. The goal was to find an appropriate PCCB for use in the compression zone of the beams, which not only improved the ductility but also changed the failure mode of the beams from shear to flexural. Among the employed blocks, a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam. The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.

关键词: ductility     four-point bending test     glass fiber-reinforced polymer     precast confined concrete block    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Effect of asphalt thin beams mixed with three nominal maximum aggregate sizes in the bending beam rheometer

Chun-Hsing HO,María Francisca Martínez GONZÁLEZ,Cristina Pilar Martín LINARES

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 1-7 doi: 10.1007/s11709-016-0367-5

摘要: The objective of this research is to evaluate an impact of asphalt mixture beams with varying sizes of aggregate in the Bending Beam Rheometer (BBR) for testing/predicting thermal cracking properties of asphalt pavements. The BBR test has following benefits: the equipment is cheaper, it uses smaller specimens, faster conditioning, easier availability for quality control, easier to manage, etc. However some concerns have been raised: some consider that the size of the aggregate may affect the test’s results; the other concern is that such small beams cannot represent the whole properties of the asphalt pavement. To address these criticisms, imaging techniques, statistical analysis, and viscoelastic modeling are used. Asphalt thin beams prepared with three different nominal maximum aggregate size (NMAS) (12.5mm, 9.5 mm, and 4.75 mm) were tested at three different temperatures (-18°C, -24°C, and -30°C). Based on results from statistical analyses and viscoelasticity, the ratio of asphalt binders and voids and stiffness differences among the three NMAS specimens are not significant, meaning that the impact of asphalt thin beams prepared with the three NMAS on the prediction of thermal cracking is minimal and can be neglected.

关键词: bending beam rheometer     thin beams     thermal cracking    

Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber

HU Kexu, HE Guisheng, LU Fan

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 399-404 doi: 10.1007/s11709-007-0054-7

摘要: In this paper, two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures. The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h. It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

关键词: polymer     insulated     resistant     CFRP     resistance    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

标题 作者 时间 类型 操作

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

期刊论文

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

期刊论文

Predicting the response of continuous RC deep beams under varying levels of differential settlement

M. Z. NASER, R. A. HAWILEH

期刊论文

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

期刊论文

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

期刊论文

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Uncertainty of concrete strength in shear and flexural behavior of beams using lattice modeling

期刊论文

Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

BU Liangtao, SHI Chuxian, SONG Li

期刊论文

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Effect of asphalt thin beams mixed with three nominal maximum aggregate sizes in the bending beam rheometer

Chun-Hsing HO,María Francisca Martínez GONZÁLEZ,Cristina Pilar Martín LINARES

期刊论文

Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber

HU Kexu, HE Guisheng, LU Fan

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文